
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 20, 9 15-934 (1995) 

OPTIMUM AERODYNAMIC SHAPE DESIGN INCLUDING MESH 
ADAPTIVITY 

GABRIEL BUGEDA AND EUGENIO ORATE 
Escola Tkcnica Superior d’Enginyers de Cumins, Canals i Ports, Universitat Politknica de Catulunya C/Gran Capita s/n, 

Campus Nord UPC, Modul CI. E-08034 Barcelona, Spain 

SUMMARY 

This paper presents a methodology for solving shape optimization problems in the context of fluid flow problems 
including adaptive remeshing. The method is based on the computation of the sensitivities of the geometrical 
design parameters, the mesh, the flow variables and the error estimator to project the refinement parameters from 
one design to the next. This sensitivity analysis is described for the incompressible potential equations and the 
Euler equations. The efficiency of the proposed method is checked by means of two 2D inverse problems. 
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INTRODUCTION 

The increasing complexity of fluid flow problems to be analysed with the finite element method makes 
necessary the use of meshes with an adequate sizing of the elements adapted to the flow features. This 
is necessary to capture the flow complexities (shock waves and boundary layers), but it increases 
considerably the computational cost of the analysis. 

The high cost of the analysis of a complex flow can be reduced if an adaptive remeshing strategy is 
employed. In this case small elements are used only in the zones where the flow is complex, whereas 
bigger elements are used in the rest of the domain. A general scheme of such a strategy is shown in 
Figure 1. The basic requirements of this strategy are the following: 

[ Definition of the flow problem: Geometrv and boundarv conditions 1 
8 

Mesh generation 1 
4 

Check the quality of the results. Definition of a new mesh 
11 

1 Convergence 1 
Figure 1. Adaptive remeshing scheme. 
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(1) a non-structured mesh generator able to control the sizes of the elements anywhere; 
( 2 )  an a posteriori error estimator or indicator to assess where smaller (or larger) elements are 

(3) an optimality criterion for the definition of the characteristics (element sizing) of an optimal 
needed; 

mesh for a given CPU cost, or a given precision. 

The adaptive remeshing procedures are typically based on a series of successive analyses of the flow 
problem using meshes with increasing quality. This is possible because the characteristics of the flow 
problem are the same during the successive analyses. This procedure is much more complex if these 
characteristics are continuously changing as in the case of an optimization problem. Here a series of 
different designs are obtained and the Characteristics of the flow can change from one design to the 
next. An ‘optimal’ mesh for the analysis of one design can become inadequate for the next one. This 
can be crucial if the location of flow discontinuities (i.e. shocks, separation points, etc.) changes from 
one design to the next. 

Traditionally, optimization problems are solved iteratively following the scheme shown in Figure 2. 
An important development in this direction is described in Reference 1. In this the same mesh is 
properly adapted for the analysis of each geometry. There is no control on the quality of the results, 
which can lead to convergence problems and also to bad final design results. Not only the quality of 
the analysis but also the quality of the sensitivity analysis depends on the quality of the meshes. 

To insert an adaptive remeshing loop inside the optimum design iterative process is an obvious 
possibility that has already been attempted.2 Unfortunately, in this case the total CPU cost grows 
proportionally to the number of optimization iterations multiplied by the number of adaptive 
remeshings for each design. 

The definition of a good mesh in an adaptive mesh enrichment process requires results from a 
previous analysis using a given mesh. In the iterative resolution of an optimum design problem various 
geometries are obtained and analysed. But the fluid flow characteristics are different for each one. The 
authors3 have recently proposed a methodology where the information required for each adaptive 
remeshing is taken from the analysis of the previous design. Both the mesh parameters and the error 
estimator are ‘projected’ to the next enhanced design. This allows us to define a priori refined meshes 
which ensure improved quality of the results in the analysis of each design geometry. The general 
scheme of this methodology is shown in Figure 3. The main features of this methodology are discussed 
in the following sections and some of the main expressions are detailed for the cases of incompressible 
potential and Euler flows. 

Definition of the initial design, flow variables, objective function 
and finite element mesh (parametrization of the problem) 

U 

U 
Flow sensitivity analysis 

Design enhancement via optimization techniques I 

Figure 2. Classical optimization approach. 
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Projection of the coordinates and the error estimator 
to the next design. Definition of the new mesh 

917 

- 

Definition of the initial design, design variables t and 
objective function f (parametriration of the problem) 

Mesh generation using an unstructured mesh generator. 
Desired characteristics specified by a background mesh 

t- 

U 
Sensitivity analysis of the nodal coordinates 

U 
1 Finite clement analvsis. Computation of the error estimator 1 

u 
I Sensitivitv analvsis of the nodal variables. error estimator and objective function 1 

r) 

I Design enhancement using optimisation techniques 

Figure 3. Proposed optimum shape design methodology. 

PARAMETRIZATION OF THE PROBLEM 

Each design geometry is represented by using 'definition points' which specify some interpolation 
curves. The curves used here are parametric B- splines. The general expression of a closed B-spline for 
q points is4 

a 

where r(t) is the position vector depending on a parametric variable t .  The co-ordinates of the 
definition points are recovered using t = 0,1,2, . . . (see Figure 4). The curve is expressed as a linear 
combination of q + 1 normalized fourth-order (cubic) B-splines. The degree of continuity of a cubic 

r4 r3 

Figure 4. Definition points and polygon definition points of a B-spline. 
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B-spline is e. The coefficients ri are the co-ordinates of the so-called polygon definition points and 
are found by using the co-ordinates of the definition points and some additional conditions about 
slopes and curvatures to build up a linear system of equations 

V = NR, (2) 
where V is a vector containing the imposed conditions at the definition points (co-ordinates, slopes, 
curvatures, etc.), N is a matrix containing some terms corresponding to the values of the polynomials 
N4,/ + that define each B-spline evaluated at the definition points, and the vector R contains the 
coefficients ri to be computed. Details of this process can be found in Reference 4. 

The first- and second-order sensitivities of R along a direction s in the variable space are given by 

- -NN-'  dR dV 6" #V as2 d2N as2 R - 2 E E ) .  as as (3) 
dS 

The derivatives of V with respect to the co-ordinates of the definition points chosen as design 
variables can be easily computed. The vectors dR/ds and d2R/ds2 will contain the terms dri/as and 
#ri/ds2 respective~y.~ 

Finally, the sensitivities of the co-ordinates of any point on the interpolation curve corresponding to 
a constant value o f t  are obtained by 

The last expression is used to compute the sensitivities of the nodal points placed at the boundary of 
the finite element mesh. 

MESH GENERATION AND SENSITIVITY ANALYSIS 

In order to control the sizes of the elements, a non-structured mesh generation algorithm should be 
chosen. In this work the well-known advancing front method has been ~ h o s e n . ~  The characteristics of 
the desired mesh are specified via a background mesh over which nodal values of the size parameter 6 
are defined and interpolated via the shape functions. The background mesh for the first design has to 
be specified by the user. For subsequent designs the background mesh is taken to coincide with the 
mesh projected into this design from the previous one. This projection process will be described later. 

Once the sensitivities of the co-ordinates of each boundary node are known, it is also possible to 
compute the sensitivities of the co-ordinates of each internal nodal point (mesh sensitivities). These 
sensitivities are necessary to assess how the mesh evolves when the design variables change. 

There are many different ways to define the evolution of the mesh in terms of the design variables. It 
is possible to consider a simple analogous elastic medium defining the mesh movement. This is the 
basis of the so-called 'spring analogy' where each element side is regarded as a spring connecting two 
nodes. The force induced by each spring is proportional to its length and the boundary nodes are 
considered as fixed. The solution of the equilibrium problem in the spring analogy is simple but 
expensive and it involves solving a linear system of equations with two degrees of freedom per node. 

In this work the spring analogy problem has been solved iteratively using a simple Laplacian 
smoothing approach. This technique is frequently used to improve the quality of non-structured 
meshes. It consists of the iterative modification of the nodal co-ordinates of each interior node by 
placing it as the center of gravity of adjacent nodes. The expression of the new nodal position vector ri 
for each iteration is given by 



OPTIMUM AERODYNAMIC SHAPE DESIGN 919 

where rj are the position vectors of the mi nodes connected with the ith node. 
The solution of the spring analogy problem with a prescribed error tolerance requires us to check the 

quality of the solution after each smoothing cycle. Taking into account that the described iterative 
process is only a way to obtain mesh sensitivities rather than the solution of the equilibrium problem 
itself, rigorous convergence conditions are not needed. For this reason the number of smoothing cycles 
to be applied can be fixed a priori. This allows us to substantially decrease the CPU time of the mesh 
sensitivity analysis compared with that required for the full resolution of the spring analogy 
equilibrium equations. In the examples presented later we have checked that 50 ‘smoothing’ iterations 
are enough to ensure a good quality of results. 

The first- and higher-order mesh sensitivities along any directions of the design variable space are 
obtained by differentiating equation (5) with respect to s for each cycle, i.e. 

The last equations provide the sensitivity analysis of the co-ordinates of all the internal nodes. There 
is a loop over all the internal nodes corresponding to each smoothing cycle. The sensitivities of each 
node are obtained from the sensitivities of the adjacent nodes. Before the first cycle only the boundary 
nodes have non-null sensitivities, obtained from equations (4). 

FLOW ANALYSIS, ERROR ESTIMATOR AND SENSITIVITY, ANALYSIS FOR THE 
INCOMPRESSIBLE POTENTIAL FLOW MODEL 

Flow analysis and error estimation 

The basic equations for the analysis of the flow around a profile using an incompressible potential 
model with lifting involve a ‘continuous’ potential @, and a ‘non-continuous’ potential (D1 which are 
combined in order to accomplish the Kutta-Joukowski condition.6 

Let us consider a domain R where the flow problem is defined. A cut Z between the training edge Te 
and the boundary of R is defined (see Figure 5). The upper and lower sides of the cut are denoted C+ 
and Z- respectively. 

Te- c- I 00 
I ”  

f n 

Figure 5. Definition of the domain and boundary conditions for the potential flow problem 
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The corresponding equations for the ‘continuous’ and ‘non-continuous’ potentials are6 

A@o = 0, 

@ole+ - @ole- = 0, 

The velocities at each point corresponding to each potential field are obtained from their gradients as 

The two potentials are combined to get the final solution @ = @o + AQI, where A is obtained from 
the application of the Kutta-Joukowski condition6 which ensures the continuity of the upper and lower 
velocities at the trailing edge. In this work the Kutta-Joukowski condition has been imposed by 
making equal the modulis of the velocities at both sides of the training edge ([v(Te-)I2 = [v(Te’)12). 
This condition can be written in terms of the velocities corresponding to each potential: 

VO = VQ.0 and ~1 = AV@i. 

[vo(Te-) + ~ v l  [vg(Te+) + ~ v l ( ~ e + ) ] * .  (8) 
The last expression allows us to obtain A by solving a simple second-order polynomial. It will be 

obtained in terms of the velocities corresponding to each potential field at both sides of the training 
edge. 

If more than one aerofoil is involved, a non-continuous potential is defined for each geometry and 
the Kutti-Joukowski condition is applied to each training edge. In that case there is a difference A- 
factor corresponding to each aerofoil and expression (8) is replaced by a non-linear system of 
equations. 

A finite element approximation can be used to discretize equations (7). The equations corresponding 
to each potential @)j = 0,1, can be discretized separately, i.e. @, % 6, = C, Niai = Na, leading to a 
linear system of equations in the form6 

The matrix B contains the Cartesian derivatives of the shape hnctions Ni and can be used to obtain 

For incompressible potential problems the ‘energy’ of the exact solution can be defined as 
the velocities corresponding to the approximated potential as 0 = B&. 

The error of this ‘energy’ can be estimated using the error estimator developed by Zienkiewicz and 
Zhu7 for structural problems. The extension to potential flow problems requires the definition of the 
global error norm 
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where v are the 'exact' velocities, are the velocities obtained from the finite element solution and !2 is 
the flow analysis domain. 

Since the exact velocities are usually not known, they are approximated by v x V* = NV*, where V* 
are nodal values obtained by simple nodal averaging of the finite element values, local or global least 
squares smoothing or other appropriate projection methods7 A simple approach is to use global nodal 
smoothing with a 'mass' matrix, giving the nodal smoothed values v* as 

v* = M-' Nv$ dR, 

where N, are the chosen velocity- interpolating functions giving a smooth nodal velocity field7 and 
Mq = sn Nv, N., dn. Equation (1 2) can obviously be applied to solve independently for each individual 
velocity component. 

The 'energy' of the exact solution is estimated as 

~ ~ U ~ ~ z  (J v*Tv*m+J*("*-v)dn) ' 1 2  . 

n 

Both lle1I2 and llUJ12 can be evaluated as sums of their respective element contributions. 

Mesh adaptivity 

For the complete definition of the characteristics of a new mesh in the remeshing procedure it is 
necessary to use a mesh optimality criterion. In this work a mesh is considered as optimal when the 
error density is equally distributed across the volume, i.e. when lle113/fie = lle112/SZ is satisfied. The 
justification for this optimality criterion can be found in References 8-10. 

The combination of the optimality criterion and the error estimation allows us to define the new 
element sizes. First it is necessary to define the limit of the allowable global error percentage y as 

The desired error level for each element is 

The new element sizes he can be computed in terms of the old ones he using the expression 

where te = [ ~ e ~ ~ e / ~ ~ e ~ ~ ~  and p is the order of the shape function polynomials. For hrther details see 
References 8-10. 

Sensitivity analysis of the objective function and the error estimator 

The exact sensitivity analysis of all the integral expressions involved in the finite element 
discretization of the incompressible potential flow model can be obtained by direct derivation of 
equations (9). This provides the sensitivities of all magnitudes in terms of the mesh sensitivities 
previously obtained (details of this process are described in References 3). The sensitivities of an 
integral expression are computed after its transformation into the isoparametric domain whose shape 
does not depend on the design variables. The jacobian of this transformation, 1J1, can be expressed in 
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terms of the nodal co-ordinates, so that it can also be differentiated in order to know the integral 
sensitivities. Using the techniques developed in Reference 3, the sensitivities of the element stiffness 
matrix can be obtained as 

where the sensitivity of the Jacobian is 

In equation (1 7) the matrix B depends on the nodal co-ordinates, so that dB/ds can be obtained 
fiom the mesh sensitivities. 

This technique allow us to obtain first- and higher-order sensitivities of the element stiffness matrix 
K and of any other integral expression involved in the analysis. The detailed expressions for the first- 
and higher- order sensitivity analysis can be found in Reference 3. 

Equation (17) allows us to obtain the sensitivities of each nodal variable a as 

- - I $ - '  da - 
a s  (& 8 dK as a), 

7g&=K-' $f as2 $K as2 a - 2 % @ ) .  as as (19) 

Equation (1 9) show that the inverse of the stiffness matrix is needed for the sensitivity computations. 
If a direct solver is used, this matrix has already been factorized and each new sensitivity analysis 
involves only a new back-substitution process. Moreover, it is not necessary to assemble the 
sensitivities of the stiffness matrix, because they always appear multiplying a vector and these products 
can be computed in an element-by-element manner. The corresponding expressions can be separately 
applied to each potential field (6o1 61, . . .). 

For a single aerofoil the sensitivity analysis of the total potential 6 = 60 + A61 involves a 
combination of the sensitivities of 6o1 61, and A 

( 

$6 $60 $61 dA $61 $1 A 

+ A -  +2- -  + - @ I .  (20) - - -  - 
a6 - 860 a&* aA 
- --+A -+- @ I ,  as as as as as2 as2 as2 as as2 as2 

The terms dA/ds and $Alas2 can be obtained from the derivation of equation (8) with respect to s. 
These will be expressed in terms of the velocities at both sides of the trailing edge and their 
sensitivities. 

The sensitivities of the velocities corresponding to each potential field can be obtained via the 
equations 

(21) 
$0 $B A a B 8 6  $6 
- = - @ + 2 - - + B -  

a0 dB A aa) 
- = - @ + B - - ,  as as as as2 as2 as as as2 . 

Obviously these computations are all performed at the Gauss point level. The same operation can be 
performed to compute the sensitivities of the velocities at the nodal points (V*) in terms of the 
velocities at the integration points by direct differentiation of expression (12) and using the 
corresponding tools for the differentiation of the integral expressions.' 

Very similar equations to (20) and (21) hold the cases with more than one aerofoil. Here there are as 
many 1-parameters as different components where the Kutta-Joukowski condition is imposed. These 
parameters are obtained by solving a non-linear system of equations, each one corresponding to the 
Kutta-Joukowski condition applied over one aerofoil. To obtain the sensitivities of the A-parameters, it 
is necessary to derivate this system of equations with respect to the velocities at the trailing edge of 
each aerofoil. 
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The computation of the pressure coefficient C, and its sensitivities in terms of the velocities for the 
case of an incompressible flow is trivial using the expression 

2 

c, = 1 - (&) 
The sensitivities of the objective hnction can be obtained by its direct derivation with respect to the 

design variables. These sensitivities can finally be expressed in terms of the sensitivities of the nodal 
velocities. 

The sensitivities of the error estimator and the ‘energy’ of the solution can be obtained in terms of 
the sensitivities of the velocities by appropriate derivation of the integral expressions (1 1) and (1 3) 
using the same technique as described above.3 

FLOW ANALYSIS, ERROR ESTIMATOR AND SENSITIVITY ANALYSIS FOR THE EULER 
EQUATIONS 

Flow analysis 

We will consider here for simplicity the solution of the Euler equations neglecting the temperature 
effects. These equations can be written in conservative form as 

dU dF; -+- + Q = 0, at ax;  (23) 

where for 2D problems 

u = [P,  u1, U21T, Fi = [ ~ u i ,  ului + ~ 6 1 i ,  u2ui +p62iIT, Q = [O,  -pfi, -pJ2IT. 
(24) 

In the above U; = pu;, where p is the density and u; is the flow velocity along the global ith axis,f; 
are source terms due to gravitational acceleration and p is the pressure related to the density by the 
standard constitutive law p = RTp, where R is the universal gas constant and Tis the temperature. Note 
that isothermal conditions have been assumed in (23) and (24). 

The time-space solution of equation (23) and (24) can be found in a variety of ways. A simple 
option is provided by the well-known explicit Taylor-Galerkin proced~re,~ giving the final discretized 
systems of equations in the form 

MAa = -At[(V + H)a + f]”, (25 ) 
where Aa are the unknown incremental variables, a is the vector of nodal variables and 

(26) 

M = S, NTN dn, 

Here BT denotes boundary terms and 

dF; 
A;(U) = - dU 

The matrix H in (25) plays the role of a balancing diffusion helping to stabilize the numerical 
solution. Full details of this algorithm can be found in Reference 7. The discretized form (25) is usually 
completed by adding an ‘ad hod shock-capturing term in the form of a crosswind diffusion which 
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guarantees monotonicy of the solution. Here many alternatives are possible and some of the most 
popular options can be found in Reference 7. 

Once the steady state has been reached, equation (25)  reduces to (neglecting the shock-capturing 
term) 

W(d, a) = (V + H)a + f = 0, (28) 

where d are the appropriate design parameters. Note that the value of At in terms H and f refers now to 
the last time increment of the steady state solution. 

Equation (28) can be used as the starting point to compute the sensitivities of the nodal variables 
with respect to the chosen design parameters, as will be shown in the next subsection. 

Sensitivity analysis 

In order to compute the sensitivities of the objective function with respect to the design parameters it 
is necessary to compute first the sensitivities of the nodal variables of the problem. 

In the following we will assume that vector W of (28) accomplishes the necessary requirements for 
the application of the implicit function theorem. In this case the sensitivity of the nodal variables a 
along a direction s in the design variable space can be computed by 

- _ _ _  da - - (dW)-'dW - - - - (d[ (V+H)a+f] ) - - 'd[ (V+H)a+f]  
dS da ds da dS 

(29) 

The computation of the partial derivatives of V, H and f with respect to a can be obtained using the 
expressions 

The partial derivatives of Ai with respect to a can be obtained from its definition in (27). 
For the computation of the partial derivatives of V, H and f with respect to s it has to be noted from 

(26) that the terms V, H and f are integral expressions that can be computed by assembling the 
contributions of all the elements. Then the sensitivities of each term can also be computed by assembly 
of all the elemental sensitivities. For instance, the matrix V can be computed as 

where the last integral has been transformed into the isoparametric domain as in expression (1 7) 
corresponding to the potential flow equations. Then the sensitivities of (3 1) can be obtained by 

where the sensitivities of IJI can be obtained using (18). 

ordinate sensitivities (see Reference 3 for more details). 
The second derivatives of N with respect to xi and s can also be computed in terms of the nodal co- 
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Error estimation and adaptivity 

For one-dimensional problems the local error e in the solution can be defined as the difference 
between the exact solution w (where w denotes any of the field variables) and the approximated 
solution obtained after the finite element discretization, 6: 

e = w - i o .  (33) 
If linear elements are used, as is normally the case in compressible flow problems, and assuming that 

the solution is exact at the nodes, the error can be expressed within each element as 

2 a26 
e = Ch, -, 

8x2 (34) 

where h, is the size of the element and C is a constant.’ The remeshing strategy aims to obtain a new 
mesh where this error is equally bounded everywhere. The most popular strategy for the definition of 
the new mesh is to distribute this error uniformly over the domain. In this case the requirement is that 
the total error should be equally distributed between all the elements, i.e. 

(35) 

Equation (35) suggests that the new mesh should be generated with a local spacing 6 determined 
from the condition 

where ep is normally chosen in order to get ‘reasonable’ meshes avoiding too small elements. Typically 
S~i,(#6/a~),,, where Smin is the minimum element size chosen and (#%/aa?),, is the maximum 
value of the second derivative in the finite element mesh. 

For two-dimensional problems the second derivatives of a typical variable of the problem, U, can be 
computed at each node as 

The local principal directions 1, and l2 of the Hessian matrix D can be determined and the 
corresponding quantities can be obtained 

The one-dimensional process outlined above can be applied along each of the principal directions, 
leading to the requirement that 

where S 1  and S2 denote the new spacings in the directions l I  and 1,. These spacings computed at each 
nodal point define the characteristics of the new mesh. 

The control variable U can be chosen to be one of the nodal variables of the problem, e.g. the 
density, or a combination of any of them, e.g. the Mach number or the modulus of the velocity. 

The computation of the second derivatives of U needs some explanation. For linear elements these 
second derivatives are zero within the elements and take an infinite value at their boundaries. One 
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solution to this problem is to define a second-derivative field interpolated with the same shape 
functions as in the discretization of the flow problem, i.e. 

---N(&). a2u 
axjaxk 

This new second-derivative field is adjusted to the original one by a least squares method as 

s, NT(.%-& )dQ = 0. 

After integrating by parts, (40) gives 
a2u = M-' (IQ NT -) a2u = -M-' (IQ dNT - dN dQ) U ,  

d X j d X k  axjaxk ax. axk 
where M is the mass matrix defined in (26). 

The computation of the sensitivities of the second-derivative field in terms of the sensitivities of the 
nodal variables can be obtained following the same rules as in the sensitivity analysis of the flow 
variables. 

The process outlined above provides the standard remeshing strategy or the analysis of compressible 
fluid flow problems. We will show next how this strategy can be introduced into an optimum design 
process to define the characteristics of the meshes for successive designs. 

DESIGN ENHANCEMENT AND DEFINITION OF THE NEW MESH 

The objective function sensitivities are used to get improved values of the design parameters by means 
of a standard minimization m e t h ~ d . ~  Depending on the optimization algorithm, it may be necessary to 
use second- order sensitivities. The design variables corresponding to the improved design will usually 
be found as 

dk+' = dk + 8sk, (43) 
where 6 is an advance parameter. The direction of change, sk, can be obtained using a BFGS quasi- 
Newton method or a GMRES method which only requires first derivatives of the objective function. 
The value of 8 can be obtained by a line search procedure. One possibility is to use a second-order 
sensitivity analysis in the direction sk. The objective function can then be approximated along this 
direction using a second-order Taylor expansion whose minimization provides the value of 8. Details 
of this algorithm can be found in Reference 3. 

Once the new design has been defined, all the relevant variables for the adaptive remeshing strategy 
can be projected from the old design to the new one using the sensitivity analysis. Second-order 
sensitivities can be used if required. The co-ordinates of the projected mesh are obtained using 

For the case of incompressible potential equations the projections of the error estimator and the 
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For the case of the Euler equations any of the nodal variables can be projected using 

These projections provide a good approximation of each of the above values for the next design 
configuration prior to any new computations. In fact, the projected values provide the necessary 
information to perform a remeshing over the next design even before any new computation is 
attempted. In that sense we have changed an error estimator computed a posteriori into an a priori 
error estimator for the definition of a new mesh. 

This projection is of paramount importance since it allows us to control the quality of the mesh for 
each new design. Only a single mesh is generated in each new design analysis step. Thus the extra 
computation cost involved in the control of the mesh quality is very cheap. 

The projected values are used to create the background mesh information needed to generate the 
mesh corresponding to the new design geometry. This operation closes the iterative process which will 
lead to the optimum design geometry after convergence. 

APPLICATION EXAMPLES 

In order to show the good behaviour of the presented methodology applied to the resolution of 
aerodynamic shape optimization problems, the results of two reconstruction cases are presented. The 
flow results have been obtained using the potential flow model. 

Korn aerofoil 

The example chosen is the recovery of a Korn aerofoil at an angle of attack of 0" as proposed in 
Reference 3. The target pressure coefficient has been obtained by a direct computation of the 
Korn aerofoil with a finite element code including adaptive remeshing with a maximum global error of 
0.1%. The initial design corresponds to an NACA 64A410 profile. 

The inverse problem has been solved using a minimization approach. The cost hnctional to be 
minimized has been defined as 

This integral is extended around the profile and the integration variable is the arc s. 
The geometry of each design has been defined using 25 design variables. These variables are the y- 

co-ordinates of 25 points distributed around the profile which are used to interpolate a B-spline. Figure 
6 shows the initial shape and the finite element mesh used for the initial design. The 25 points used to 
define the shape of each design are all the nodes lying on the profile in Figure 6, with the exception of 
the trailing edge which is fixed. 

In this example particular emphasis has been put on 

(1) The accuracy of the numerical solution 
(2) The efficiency of the process. 

Figure 7 shows the final mesh and shape obtained for this problem using a global error limited to 
0.1% of the total potential norm. 

Figure 6 shows a superposition of the C,, distributions corresponding to the target (Kom) aerofoil, 
the initial (NACA 64A410) aerofoil and the final design obtained with a 0.1% error tolerance. As can 
be observed, the agreement between the target and the final design is almost perfect. 



928 G. BUGEDA AND E. ORATE 

Figure 6. Initial shape, initial mesh and definition of design variables for the Kom aerofoil problem 

Figure 9 shows the convergence of the normalized cost functional using different global error norm 
values and P2 triangular finite elements. It can be observed that it is necessary to substantially decrease 
the global error norm to produce a significant improvement in the final value of the cost functional 

Figure 10 shows the computing time necessary to perform 100 iterations of the BFGS algorithm for 
different values of the global error required. These computations have been performed on a Silicon 
Graphics Indigo R4000 workstation. It is seen that an increment in the precision of the numerical 
solution involves a big increment in the computing time. On the other hand, it is possible to obtain a 
quite good solution in a short time (1 h) allowing for a bigger global error. Once a solution with a 
given global error norm is obtained, it is also possible to restart the process from this solution using a 
smaller global error. 

Figure 11 shows the number of finite elements used for each iteration and for different global errors. 
The relationship between the global error required and the increase in the number of elements for each 
mesh can be observed. This explains the big increase in the computing cost for high precisions. In any 
case the percentage of error is perfectly controlled and always below the imposed limitation. 

(48). 

Figure 7. Final shape and mesh for a global error of 0.1% for the Kom aerofoil problem. 
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Figure 9. Evolution of the cost functional for the Kom aerofoil problem. 
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Figure 12. Initial shape and mesh for the two-element problem. 

Two-element problem 

This case consists of recovering two NACA 0012 profiles at an angle of attack of 0" positioned as 
shown in Figure 13. The starting design is formed by the two profiles shown in Figure 12. Each profile 
has been obtained from an NACA 0012 by reducing its thickness to one-half and rotating it 5" around 
its leading edge. 

The target pressure coefficient has been obtained by a direct computation of the target design 
as in the previous example. 

The inverse problem has been solved using a minimization approach. The cost functional to be 
minimized has been defined as in equation (48), extending the integral to the boundaries of both 
aerofoils. 

The geometry of each aerofoil has been defined using 18 design variables. These variables are the y- 
co-ordinates of 18 points distributed around each profile which are used to interpolate a B-spline. 
Figure 12 shows the initial shape and the finite element mesh used for the initial design. The 18 points 
used to define the shape of each profile are all the nodes lying on them in Figure 12, with the exception 
of the trailing and leading edges. For each profile its rotation around its leading edge has been defined 
as an additional design variable. This means that two angles have been defined as design variables. The 
total number of design variables is thus 38. The maximum global error during the minimization 
process has been limited to 0.2% of the total potential norm. 

The iterative process has been considered as converged after 100 iterations. The final shape and 
mesh can be observed in Figure 13. The whole problem has taken around 100 h of CPU time on a 
Convex C-3480 computer using a single processor. It is important to note that the code has not been 
adapted to take advantage of the vectorial capabilities of the computer, which could substantially 
reduce the computational cost. 
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Figure 13. Final shape and mesh for the two-element problem. 

The evolution of the normalized cost hnctional can be seen in Figure 14. The meshes used for the 
computations have around 2700 nodes and 1300 quadratic elements and the percentage of error is 
always below the imposed limitation of 0.2%. Figures 15 and 16 show superpositions of the C, 
distributions for the target profile and the initial and final designs for each aerofoil. 

Figure 14 shows good convergence of the minimization process. The cost functional has been 
diminished by more than three orders of magnitude in 100 iterations. 

The comparisons between the target and computed C, distributions shown in Figures 15 and 16 are 
quite good, especially taking into account that the C, distribution corresponding to the initial design is 
very far away from the final one. 

CONCLUSIONS 

A new methodology for the resolution of aerodynamic shape optimization and inverse problems has 
been developed and assessed. This methodology is able to optimize the design and the analysis mesh in 
a joint manner in order to produce a final design computed with a proper mesh. 

Good quality results are obtained using a single mesh for each design without any remeshing. This 
considerably reduces the additional cost of the mesh control. 

The presented methodology has provided excellent results for all the cases analysed, leading to an 
accurate final solution with a good final mesh. 

The use of a single and different ‘optimal’ meshes for each optimum design step seems to be 
especially interesting for application of this methodology to more realistic flow models where the 
control of the mesh quality is crucial. This could be particularly attractive in the presence of shocks or 
separation points. Further assessment of this methodology in the context of both Euler and Navier- 
Stokes flows will be reported in the near future. 
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